Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Magnetic Point Group 3 (N. 16.1.60)


Table of characters of the unitary symmetry operations


(1)
(2)
(3)
C1
C2
C3
C4
C5
C6
GM1
A1
GM1
1
1
1
1
1
1
GM2
2E
GM2
1
-(1-i3)/2
-(1+i3)/2
1
-(1-i3)/2
-(1+i3)/2
GM3
1E
GM3
1
-(1+i3)/2
-(1-i3)/2
1
-(1+i3)/2
-(1-i3)/2
GM6
E
GM4
1
-1
-1
-1
1
1
GM4
1E
GM5
1
(1-i3)/2
(1+i3)/2
-1
-(1-i3)/2
-(1+i3)/2
GM5
2E
GM6
1
(1+i3)/2
(1-i3)/2
-1
-(1+i3)/2
-(1-i3)/2
The notation used in this table is an extension to corepresentations of the following notations used for irreducible representations:
(1): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press.
(2): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, based on Mulliken RS (1933) Phys. Rev. 43, 279-302.
(3): A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979) Kronecher Product Tables, 1, General Introduction and Tables of Irreducible Representations of Space groups. New York: IFI/Plenum, for the GM point.

Lists of unitary symmetry operations in the conjugacy classes

C1: 1
C2: 3+001
C3: 3-001
C4d1
C5d3+001
C6d3-001

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolGM1GM2GM3GM4GM5GM6
1
(
1 0 0
0 1 0
0 0 1
)
(
1 0
0 1
)
1
1
1
1
1
1
1
2
(
0 -1 0
1 -1 0
0 0 1
)
(
(1+i3)/2 0
0 (1-i3)/2
)
3+001
1
ei2π/3
e-i2π/3
-1
e-iπ/3
eiπ/3
3
(
-1 1 0
-1 0 0
0 0 1
)
(
(1-i3)/2 0
0 (1+i3)/2
)
3-001
1
e-i2π/3
ei2π/3
-1
eiπ/3
e-iπ/3
4
(
1 0 0
0 1 0
0 0 1
)
(
-1 0
0 -1
)
d1
1
1
1
-1
-1
-1
5
(
0 -1 0
1 -1 0
0 0 1
)
(
-(1+i3)/2 0
0 -(1-i3)/2
)
d3+001
1
ei2π/3
e-i2π/3
1
ei2π/3
e-i2π/3
6
(
-1 1 0
-1 0 0
0 0 1
)
(
-(1-i3)/2 0
0 -(1+i3)/2
)
d3-001
1
e-i2π/3
ei2π/3
1
e-i2π/3
ei2π/3
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
Licencia de Creative Commons
For comments, please mail to
administrador.bcs@ehu.eus