Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Magnetic Point Group 2 (N. 3.1.6)


Table of characters of the unitary symmetry operations


(1)
(2)
(3)
C1
C2
C3
C4
GM1
A
GM1
1
1
1
1
GM2
B
GM2
1
-1
1
-1
GM4
2E
GM3
1
-i
-1
i
GM3
1E
GM4
1
i
-1
-i
The notation used in this table is an extension to corepresentations of the following notations used for irreducible representations:
(1): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press.
(2): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, based on Mulliken RS (1933) Phys. Rev. 43, 279-302.
(3): A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979) Kronecher Product Tables, 1, General Introduction and Tables of Irreducible Representations of Space groups. New York: IFI/Plenum, for the GM point.

Lists of unitary symmetry operations in the conjugacy classes

C1: 1
C2: 2010
C3d1
C4d2010

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolGM1GM2GM3GM4
1
(
1 0 0
0 1 0
0 0 1
)
(
1 0
0 1
)
1
1
1
1
1
2
(
-1 0 0
0 1 0
0 0 -1
)
(
0 -1
1 0
)
2010
1
-1
-i
i
3
(
1 0 0
0 1 0
0 0 1
)
(
-1 0
0 -1
)
d1
1
1
-1
-1
4
(
-1 0 0
0 1 0
0 0 -1
)
(
0 1
-1 0
)
d2010
1
-1
i
-i
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
Licencia de Creative Commons
For comments, please mail to
administrador.bcs@ehu.eus