Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Projective Magnetic Point Group 4mm1'


Table of characters of the unitary symmetry operations


1
4+
4-
2
d2
m10
m01
dm10
dm01
m1-1
m11
dm1-1
dm11
d1
d4+
d4-
A1
1
1
1
1
1
1
1
A2
1
1
1
-1
-1
1
1
B1
1
-1
1
1
-1
1
-1
B2
1
-1
1
-1
1
1
-1
E
2
0
-2
0
0
2
0
E2
2
-2
0
0
0
-2
2
E1
2
2
0
0
0
-2
-2

Multiplication table of the symmetry operations


1
4+
2
4-
m10
m1-1
m01
m11
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
1
1
4+
2
4-
m10
m1-1
m01
m11
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
4+
4+
2
d4-
1
m11
dm10
m1-1
m01
d4+
d2
4-
d1
dm11
m10
dm1-1
dm01
4+'
2'
d4-'
1'
m'11
dm'10
m'1-1
m'01
d4+'
d2'
4-'
d1'
dm'11
m'10
dm'1-1
dm'01
2
2
d4-
d1
4+
m01
dm11
dm10
m1-1
d2
4-
1
d4+
dm01
m11
m10
dm1-1
2'
d4-'
d1'
4+'
m'01
dm'11
dm'10
m'1-1
d2'
4-'
1'
d4+'
dm'01
m'11
m'10
dm'1-1
4-
4-
1
4+
d2
dm1-1
m01
m11
m10
d4-
d1
d4+
2
m1-1
dm01
dm11
dm10
4-'
1'
4+'
d2'
dm'1-1
m'01
m'11
m'10
d4-'
d1'
d4+'
2'
m'1-1
dm'01
dm'11
dm'10
m10
m10
dm1-1
dm01
m11
d1
4+
2
d4-
dm10
m1-1
m01
dm11
1
d4+
d2
4-
m'10
dm'1-1
dm'01
m'11
d1'
4+'
2'
d4-'
dm'10
m'1-1
m'01
dm'11
1'
d4+'
d2'
4-'
m1-1
m1-1
m01
m11
dm10
4-
d1
d4+
d2
dm1-1
dm01
dm11
m10
d4-
1
4+
2
m'1-1
m'01
m'11
dm'10
4-'
d1'
d4+'
d2'
dm'1-1
dm'01
dm'11
m'10
d4-'
1'
4+'
2'
m01
m01
m11
m10
m1-1
d2
d4-
d1
d4+
dm01
dm11
dm10
dm1-1
2
4-
1
4+
m'01
m'11
m'10
m'1-1
d2'
d4-'
d1'
d4+'
dm'01
dm'11
dm'10
dm'1-1
2'
4-'
1'
4+'
m11
m11
m10
dm1-1
m01
d4+
2
d4-
d1
dm11
dm10
m1-1
dm01
4+
d2
4-
1
m'11
m'10
dm'1-1
m'01
d4+'
2'
d4-'
d1'
dm'11
dm'10
m'1-1
dm'01
4+'
d2'
4-'
1'
d1
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
1
4+
2
4-
m10
m1-1
m01
m11
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
d4+
d4+
d2
4-
d1
dm11
m10
dm1-1
dm01
4+
2
d4-
1
m11
dm10
m1-1
m01
d4+'
d2'
4-'
d1'
dm'11
m'10
dm'1-1
dm'01
4+'
2'
d4-'
1'
m'11
dm'10
m'1-1
m'01
d2
d2
4-
1
d4+
dm01
m11
m10
dm1-1
2
d4-
d1
4+
m01
dm11
dm10
m1-1
d2'
4-'
1'
d4+'
dm'01
m'11
m'10
dm'1-1
2'
d4-'
d1'
4+'
m'01
dm'11
dm'10
m'1-1
d4-
d4-
d1
d4+
2
m1-1
dm01
dm11
dm10
4-
1
4+
d2
dm1-1
m01
m11
m10
d4-'
d1'
d4+'
2'
m'1-1
dm'01
dm'11
dm'10
4-'
1'
4+'
d2'
dm'1-1
m'01
m'11
m'10
dm10
dm10
m1-1
m01
dm11
1
d4+
d2
4-
m10
dm1-1
dm01
m11
d1
4+
2
d4-
dm'10
m'1-1
m'01
dm'11
1'
d4+'
d2'
4-'
m'10
dm'1-1
dm'01
m'11
d1'
4+'
2'
d4-'
dm1-1
dm1-1
dm01
dm11
m10
d4-
1
4+
2
m1-1
m01
m11
dm10
4-
d1
d4+
d2
dm'1-1
dm'01
dm'11
m'10
d4-'
1'
4+'
2'
m'1-1
m'01
m'11
dm'10
4-'
d1'
d4+'
d2'
dm01
dm01
dm11
dm10
dm1-1
2
4-
1
4+
m01
m11
m10
m1-1
d2
d4-
d1
d4+
dm'01
dm'11
dm'10
dm'1-1
2'
4-'
1'
4+'
m'01
m'11
m'10
m'1-1
d2'
d4-'
d1'
d4+'
dm11
dm11
dm10
m1-1
dm01
4+
d2
4-
1
m11
m10
dm1-1
m01
d4+
2
d4-
d1
dm'11
dm'10
m'1-1
dm'01
4+'
d2'
4-'
1'
m'11
m'10
dm'1-1
m'01
d4+'
2'
d4-'
d1'
1'
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
1
4+
2
4-
m10
m1-1
m01
m11
4+'
4+'
2'
d4-'
1'
m'11
dm'10
m'1-1
m'01
d4+'
d2'
4-'
d1'
dm'11
m'10
dm'1-1
dm'01
d4+
d2
4-
d1
dm11
m10
dm1-1
dm01
4+
2
d4-
1
m11
dm10
m1-1
m01
2'
2'
d4-'
d1'
4+'
m'01
dm'11
dm'10
m'1-1
d2'
4-'
1'
d4+'
dm'01
m'11
m'10
dm'1-1
d2
4-
1
d4+
dm01
m11
m10
dm1-1
2
d4-
d1
4+
m01
dm11
dm10
m1-1
4-'
4-'
1'
4+'
d2'
dm'1-1
m'01
m'11
m'10
d4-'
d1'
d4+'
2'
m'1-1
dm'01
dm'11
dm'10
d4-
d1
d4+
2
m1-1
dm01
dm11
dm10
4-
1
4+
d2
dm1-1
m01
m11
m10
m'10
m'10
dm'1-1
dm'01
m'11
d1'
4+'
2'
d4-'
dm'10
m'1-1
m'01
dm'11
1'
d4+'
d2'
4-'
dm10
m1-1
m01
dm11
1
d4+
d2
4-
m10
dm1-1
dm01
m11
d1
4+
2
d4-
m'1-1
m'1-1
m'01
m'11
dm'10
4-'
d1'
d4+'
d2'
dm'1-1
dm'01
dm'11
m'10
d4-'
1'
4+'
2'
dm1-1
dm01
dm11
m10
d4-
1
4+
2
m1-1
m01
m11
dm10
4-
d1
d4+
d2
m'01
m'01
m'11
m'10
m'1-1
d2'
d4-'
d1'
d4+'
dm'01
dm'11
dm'10
dm'1-1
2'
4-'
1'
4+'
dm01
dm11
dm10
dm1-1
2
4-
1
4+
m01
m11
m10
m1-1
d2
d4-
d1
d4+
m'11
m'11
m'10
dm'1-1
m'01
d4+'
2'
d4-'
d1'
dm'11
dm'10
m'1-1
dm'01
4+'
d2'
4-'
1'
dm11
dm10
m1-1
dm01
4+
d2
4-
1
m11
m10
dm1-1
m01
d4+
2
d4-
d1
d1'
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
1
4+
2
4-
m10
m1-1
m01
m11
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
d4+'
d4+'
d2'
4-'
d1'
dm'11
m'10
dm'1-1
dm'01
4+'
2'
d4-'
1'
m'11
dm'10
m'1-1
m'01
4+
2
d4-
1
m11
dm10
m1-1
m01
d4+
d2
4-
d1
dm11
m10
dm1-1
dm01
d2'
d2'
4-'
1'
d4+'
dm'01
m'11
m'10
dm'1-1
2'
d4-'
d1'
4+'
m'01
dm'11
dm'10
m'1-1
2
d4-
d1
4+
m01
dm11
dm10
m1-1
d2
4-
1
d4+
dm01
m11
m10
dm1-1
d4-'
d4-'
d1'
d4+'
2'
m'1-1
dm'01
dm'11
dm'10
4-'
1'
4+'
d2'
dm'1-1
m'01
m'11
m'10
4-
1
4+
d2
dm1-1
m01
m11
m10
d4-
d1
d4+
2
m1-1
dm01
dm11
dm10
dm'10
dm'10
m'1-1
m'01
dm'11
1'
d4+'
d2'
4-'
m'10
dm'1-1
dm'01
m'11
d1'
4+'
2'
d4-'
m10
dm1-1
dm01
m11
d1
4+
2
d4-
dm10
m1-1
m01
dm11
1
d4+
d2
4-
dm'1-1
dm'1-1
dm'01
dm'11
m'10
d4-'
1'
4+'
2'
m'1-1
m'01
m'11
dm'10
4-'
d1'
d4+'
d2'
m1-1
m01
m11
dm10
4-
d1
d4+
d2
dm1-1
dm01
dm11
m10
d4-
1
4+
2
dm'01
dm'01
dm'11
dm'10
dm'1-1
2'
4-'
1'
4+'
m'01
m'11
m'10
m'1-1
d2'
d4-'
d1'
d4+'
m01
m11
m10
m1-1
d2
d4-
d1
d4+
dm01
dm11
dm10
dm1-1
2
4-
1
4+
dm'11
dm'11
dm'10
m'1-1
dm'01
4+'
d2'
4-'
1'
m'11
m'10
dm'1-1
m'01
d4+'
2'
d4-'
d1'
m11
m10
dm1-1
m01
d4+
2
d4-
d1
dm11
dm10
m1-1
dm01
4+
d2
4-
1

Table of projective phases in group multiplication


1
4+
2
4-
m10
m1-1
m01
m11
d1
d4+
d2
d4-
dm10
dm1-1
dm01
dm11
1'
4+'
2'
4-'
m'10
m'1-1
m'01
m'11
d1'
d4+'
d2'
d4-'
dm'10
dm'1-1
dm'01
dm'11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m1-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m01
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d4+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d4-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm1-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm01
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4+'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4-'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m'10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m'1-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m'01
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
m'11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d1'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d4+'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d2'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d4-'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm'10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm'1-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm'01
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dm'11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolA1A2B1B2EE2E1
1
(
1 0
0 1
)
(
1 0
0 1
)
1
1
1
1
1
(
1 0
0 1
)
(
1 0
0 1
)
(
1 0
0 1
)
2
(
0 -1
1 0
)
(
e-iπ/4 0
0 eiπ/4
)
4+
1
1
-1
-1
(
-i 0
0 i
)
(
e3iπ/4 0
0 e-3iπ/4
)
(
e-iπ/4 0
0 eiπ/4
)
3
(
-1 0
0 -1
)
(
-i 0
0 i
)
2
1
1
1
1
(
-1 0
0 -1
)
(
-i 0
0 i
)
(
-i 0
0 i
)
4
(
0 1
-1 0
)
(
eiπ/4 0
0 e-iπ/4
)
4-
1
1
-1
-1
(
i 0
0 -i
)
(
e-3iπ/4 0
0 e3iπ/4
)
(
eiπ/4 0
0 e-iπ/4
)
5
(
-1 0
0 1
)
(
0 -i
-i 0
)
m10
1
-1
1
-1
(
0 1
1 0
)
(
0 -1
1 0
)
(
0 -1
1 0
)
6
(
0 1
1 0
)
(
0 e3iπ/4
eiπ/4 0
)
m1-1
1
-1
-1
1
(
0 i
-i 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
(
0 eiπ/4
e3iπ/4 0
)
7
(
1 0
0 -1
)
(
0 -1
1 0
)
m01
1
-1
1
-1
(
0 -1
-1 0
)
(
0 i
i 0
)
(
0 i
i 0
)
8
(
0 -1
-1 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
m11
1
-1
-1
1
(
0 -i
i 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
(
0 e3iπ/4
eiπ/4 0
)
9
(
1 0
0 1
)
(
-1 0
0 -1
)
d1
1
1
1
1
(
1 0
0 1
)
(
-1 0
0 -1
)
(
-1 0
0 -1
)
10
(
0 -1
1 0
)
(
e3iπ/4 0
0 e-3iπ/4
)
d4+
1
1
-1
-1
(
-i 0
0 i
)
(
e-iπ/4 0
0 eiπ/4
)
(
e3iπ/4 0
0 e-3iπ/4
)
11
(
-1 0
0 -1
)
(
i 0
0 -i
)
d2
1
1
1
1
(
-1 0
0 -1
)
(
i 0
0 -i
)
(
i 0
0 -i
)
12
(
0 1
-1 0
)
(
e-3iπ/4 0
0 e3iπ/4
)
d4-
1
1
-1
-1
(
i 0
0 -i
)
(
eiπ/4 0
0 e-iπ/4
)
(
e-3iπ/4 0
0 e3iπ/4
)
13
(
-1 0
0 1
)
(
0 i
i 0
)
dm10
1
-1
1
-1
(
0 1
1 0
)
(
0 1
-1 0
)
(
0 1
-1 0
)
14
(
0 1
1 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
dm1-1
1
-1
-1
1
(
0 i
-i 0
)
(
0 eiπ/4
e3iπ/4 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
15
(
1 0
0 -1
)
(
0 1
-1 0
)
dm01
1
-1
1
-1
(
0 -1
-1 0
)
(
0 -i
-i 0
)
(
0 -i
-i 0
)
16
(
0 -1
-1 0
)
(
0 eiπ/4
e3iπ/4 0
)
dm11
1
-1
-1
1
(
0 -i
i 0
)
(
0 e3iπ/4
eiπ/4 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
17
(
1 0
0 1
)
(
1 0
0 1
)
1'
-1
-1
-1
-1
(
0 -1
-1 0
)
(
0 1
-1 0
)
(
0 1
-1 0
)
18
(
0 -1
1 0
)
(
e-iπ/4 0
0 eiπ/4
)
4+'
-1
-1
1
1
(
0 i
-i 0
)
(
0 e3iπ/4
eiπ/4 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
19
(
-1 0
0 -1
)
(
-i 0
0 i
)
2'
-1
-1
-1
-1
(
0 1
1 0
)
(
0 -i
-i 0
)
(
0 -i
-i 0
)
20
(
0 1
-1 0
)
(
eiπ/4 0
0 e-iπ/4
)
4-'
-1
-1
1
1
(
0 -i
i 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
(
0 eiπ/4
e3iπ/4 0
)
21
(
-1 0
0 1
)
(
0 -i
-i 0
)
m'10
-1
1
-1
1
(
-1 0
0 -1
)
(
1 0
0 1
)
(
1 0
0 1
)
22
(
0 1
1 0
)
(
0 e3iπ/4
eiπ/4 0
)
m'1-1
-1
1
1
-1
(
-i 0
0 i
)
(
eiπ/4 0
0 e-iπ/4
)
(
e-3iπ/4 0
0 e3iπ/4
)
23
(
1 0
0 -1
)
(
0 -1
1 0
)
m'01
-1
1
-1
1
(
1 0
0 1
)
(
-i 0
0 i
)
(
-i 0
0 i
)
24
(
0 -1
-1 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
m'11
-1
1
1
-1
(
i 0
0 -i
)
(
e3iπ/4 0
0 e-3iπ/4
)
(
e-iπ/4 0
0 eiπ/4
)
25
(
1 0
0 1
)
(
-1 0
0 -1
)
d1'
-1
-1
-1
-1
(
0 -1
-1 0
)
(
0 -1
1 0
)
(
0 -1
1 0
)
26
(
0 -1
1 0
)
(
e3iπ/4 0
0 e-3iπ/4
)
d4+'
-1
-1
1
1
(
0 i
-i 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
(
0 e3iπ/4
eiπ/4 0
)
27
(
-1 0
0 -1
)
(
i 0
0 -i
)
d2'
-1
-1
-1
-1
(
0 1
1 0
)
(
0 i
i 0
)
(
0 i
i 0
)
28
(
0 1
-1 0
)
(
e-3iπ/4 0
0 e3iπ/4
)
d4-'
-1
-1
1
1
(
0 -i
i 0
)
(
0 eiπ/4
e3iπ/4 0
)
(
0 e-3iπ/4
e-iπ/4 0
)
29
(
-1 0
0 1
)
(
0 i
i 0
)
dm'10
-1
1
-1
1
(
-1 0
0 -1
)
(
-1 0
0 -1
)
(
-1 0
0 -1
)
30
(
0 1
1 0
)
(
0 e-iπ/4
e-3iπ/4 0
)
dm'1-1
-1
1
1
-1
(
-i 0
0 i
)
(
e-3iπ/4 0
0 e3iπ/4
)
(
eiπ/4 0
0 e-iπ/4
)
31
(
1 0
0 -1
)
(
0 1
-1 0
)
dm'01
-1
1
-1
1
(
1 0
0 1
)
(
i 0
0 -i
)
(
i 0
0 -i
)
32
(
0 -1
-1 0
)
(
0 eiπ/4
e3iπ/4 0
)
dm'11
-1
1
1
-1
(
i 0
0 -i
)
(
e-iπ/4 0
0 eiπ/4
)
(
e3iπ/4 0
0 e-3iπ/4
)
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
For comments, please mail to
administrador.bcs@ehu.eus