Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Projective Magnetic Point Group 62π/3'


Table of characters of the unitary symmetry operations


1
3+
3-
d1
d3+
d3-
1E
1
e-2iπ/3
e2iπ/3
1
e-2iπ/3
e2iπ/3
2EA
2
eiπ/3
e-iπ/3
2
eiπ/3
e-iπ/3
2E
1
eiπ/3
e-iπ/3
-1
e-2iπ/3
e2iπ/3
1EE
2
e-2iπ/3
e2iπ/3
-2
eiπ/3
e-iπ/3

Multiplication table of the symmetry operations


1
3+
3-
d1
d3+
d3-
6+'
2'
6-'
d6+'
d2'
d6-'
1
1
3+
3-
d1
d3+
d3-
6+'
2'
6-'
d6+'
d2'
d6-'
3+
3+
d3-
1
d3+
3-
d1
d2'
6-'
6+'
2'
d6-'
d6+'
3-
3-
1
d3+
d3-
d1
3+
6-'
d6+'
2'
d6-'
6+'
d2'
d1
d1
d3+
d3-
1
3+
3-
d6+'
d2'
d6-'
6+'
2'
6-'
d3+
d3+
3-
d1
3+
d3-
1
2'
d6-'
d6+'
d2'
6-'
6+'
d3-
d3-
d1
3+
3-
1
d3+
d6-'
6+'
d2'
6-'
d6+'
2'
6+'
6+'
d2'
6-'
d6+'
2'
d6-'
d3+
d3-
d1
3+
3-
1
2'
2'
6-'
d6+'
d2'
d6-'
6+'
d3-
1
3+
3-
d1
d3+
6-'
6-'
6+'
2'
d6-'
d6+'
d2'
d1
3+
d3-
1
d3+
3-
d6+'
d6+'
2'
d6-'
6+'
d2'
6-'
3+
3-
1
d3+
d3-
d1
d2'
d2'
d6-'
6+'
2'
6-'
d6+'
3-
d1
d3+
d3-
1
3+
d6-'
d6-'
d6+'
d2'
6-'
6+'
2'
1
d3+
3-
d1
3+
d3-

Table of projective phases in group multiplication


1
3+
3-
d1
d3+
d3-
6+'
2'
6-'
d6+'
d2'
d6-'
1
1
1
1
1
1
1
1
1
1
1
1
1
3+
1
1
1
1
1
1
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
3-
1
1
1
1
1
1
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
d1
1
1
1
1
1
1
1
1
1
1
1
1
d3+
1
1
1
1
1
1
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
d3-
1
1
1
1
1
1
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
6+'
1
1
1
1
1
1
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
2'
1
1
1
1
1
1
1
1
1
1
1
1
6-'
1
1
1
1
1
1
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
d6+'
1
1
1
1
1
1
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
e2iπ/3
d2'
1
1
1
1
1
1
1
1
1
1
1
1
d6-'
1
1
1
1
1
1
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3
e-2iπ/3

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbol1E2EA2E1EE
1
(
1 0
0 1
)
(
1 0
0 1
)
1
1
(
1 0
0 1
)
1
(
1 0
0 1
)
2
(
0 -1
1 -1
)
(
eiπ/3 0
0 e-iπ/3
)
3+
e-2iπ/3
(
1 0
0 e2iπ/3
)
eiπ/3
(
-1 0
0 e-iπ/3
)
3
(
-1 1
-1 0
)
(
e-iπ/3 0
0 eiπ/3
)
3-
e2iπ/3
(
1 0
0 e-2iπ/3
)
e-iπ/3
(
-1 0
0 eiπ/3
)
4
(
1 0
0 1
)
(
-1 0
0 -1
)
d1
1
(
1 0
0 1
)
-1
(
-1 0
0 -1
)
5
(
0 -1
1 -1
)
(
e-2iπ/3 0
0 e2iπ/3
)
d3+
e-2iπ/3
(
1 0
0 e2iπ/3
)
e-2iπ/3
(
1 0
0 e2iπ/3
)
6
(
-1 1
-1 0
)
(
e2iπ/3 0
0 e-2iπ/3
)
d3-
e2iπ/3
(
1 0
0 e-2iπ/3
)
e2iπ/3
(
1 0
0 e-2iπ/3
)
7
(
1 -1
1 0
)
(
eiπ/6 0
0 e-iπ/6
)
6+'
e-iπ/3
(
0 e2iπ/3
1 0
)
e-iπ/3
(
0 e2iπ/3
1 0
)
8
(
-1 0
0 -1
)
(
-i 0
0 i
)
2'
-1
(
0 1
1 0
)
-1
(
0 1
1 0
)
9
(
0 1
-1 1
)
(
e-iπ/6 0
0 eiπ/6
)
6-'
eiπ/3
(
0 e-2iπ/3
1 0
)
e-2iπ/3
(
0 eiπ/3
-1 0
)
10
(
1 -1
1 0
)
(
e-5iπ/6 0
0 e5iπ/6
)
d6+'
e-iπ/3
(
0 e2iπ/3
1 0
)
e2iπ/3
(
0 e-iπ/3
-1 0
)
11
(
-1 0
0 -1
)
(
i 0
0 -i
)
d2'
-1
(
0 1
1 0
)
1
(
0 -1
-1 0
)
12
(
0 1
-1 1
)
(
e5iπ/6 0
0 e-5iπ/6
)
d6-'
eiπ/3
(
0 e-2iπ/3
1 0
)
eiπ/3
(
0 e-2iπ/3
1 0
)
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
For comments, please mail to
administrador.bcs@ehu.eus